
Allstar, Mabel and PiTone
combine to make a Yaesu

1

Steve, N8AR and Larry, K8UT

combine to make a Yaesu
Fusion repeater controller

 The Yaesu Fusion DR-1X repeater has a very
rudimentary controller in the analog FM mode.
◦ CW ID, Tail and TOT timers.
◦ No courtesy tones or voice announcements
◦ No external control
◦ A mediocre squelch system

 The DR-1X switches automatically from analog FM to
digital C4FM modes. We only want to control it in the digital C4FM modes. We only want to control it in the
analog FM mode.

 The external interface signals that Yaesu provided for
an external controller are poorly defined and not the
desired signals.

 The repeater “locks up” if an external controller
incorrectly switches modes.

 ARCOM worked with YAESU to develop a board called the
ADR to supervise proper switching of the DR-1X modes. It
can be used with different brands of repeater controllers –
ARCOM, CAT, ACC, LINK, SCOM, etc

 Repeater owners using the ADR were still experiencing
lockups.

 Justin Reed, NV8Q wrote some macros to use with the
SCOM 7330 to control the mode switching. This solution
works well but is over $500.

 All of these controllers use firmware based controllers and
have no (or use antiquated) remote interfaces.

 EASY TO PROGRAM AND CONTROL VIA THE INTERNET

 FEATURE RICH
◦ SETTABLE TIMERS
◦ CHANGEABLE COURTESY TONES
◦ VOICE AND CW ID
◦ SYNTHESIZED VOICE AND WAVE FILES
◦ SCHEDULED MESSAGES– “THE TIME IS……”◦ SCHEDULED MESSAGES– “THE TIME IS……”
◦ TAIL MESSAGES

 GOOD SUPPORT AND LARGE USER BASE

 Initially, we considered writing a simple repeater
controller program to run on a Raspberry Pi 3 (rPi3).
We played with:
◦ Code to generate a CW ID
◦ Code to play a WAV file

 Became aware of the Open Repeater Project which
is the development of a low cost, low power, but is the development of a low cost, low power, but
feature rich duplex Linux based amateur radio repeater
controller using single board computers (SBCs) like the
Raspberry Pi 2 and Beaglebone Black.
◦ Not going anywhere fast
◦ Would not support our need to switch modes on the DR-1X

 (Re)-Discovered the repeater controller capability of
Allstar known as Asterisk/app_rpt

 1999 – Mark Spencer (Huntsville AL) started a Linux
software company. They needed phone services but
discovered available systems were very expensive. So they
wrote their own PBX software called Asterisk.

 Asterisk is written to allow additional applications to extend
its capability.

 The app_rpt repeater controller application was written by
Jim Dixon, WB6NIL(SK) and Steve Rodgers, WA6ZFT in the
mid 2000's to fulfill his need for a repeater controller and
VOIP interface. Required a PC and a special interface card
or USB Radio Interface Module (RIM)

 AllStar Asterisk/app_rpt is a complete HAM radio repeater
controller and link system built on the Asterisk VOIP
platform.

 2014 – Doug Crompton WA3DSP began work on a version
to run on a Raspberry Pi. Distros now available for the rPi 2
and 3 running Archlinux.

 N4IRS, Steve Zingman recently released a distro running
Raspbian.

 So we have a powerful repeater controller running on a rPi
but how to implement the task of switching the DR-1X to the
external controller using app_rpt? Modify app_rpt?

 app_rpt is open source so the code could be modified and
recompiled to perform this task. We soon discovered that
app_rpt is more than 20,000 lines of code. Not a SMOP as
far as we were concerned!

 We conjectured that we could route some of the signals
used by app_rpt through another software program before
it was sent to app_rpt. We would call this concept MABEL.

 MABELwould look for a valid analog FM signal (i.e. CTCSS)
and switch the DR-1X mode from DIGITAL to FM-FM. Once
the switch was complete, it would forward the signals on to
app_rpt switching back to digital after loss of the FM signal.app_rpt switching back to digital after loss of the FM signal.

 In additon to the rPi, we need some other hardware pieces
◦ Detect PL (CTCSS) and Squelch (COS). We use the SC-50.
◦ A USB RIM because that’s what app_rpt requires for audio and

the CTCSS, COS and PTT signals. We now use the RA-35.
◦ Interface electronics to the rPi. Was Lo-Tech hat, now our design.
◦ A method to detect that the repeater is transmitting. We use an RF

detector instead of cutting into the repeater internal wiring carrying the
PTT signal.

 Allstar for PC has a choice of two radio channel drivers
◦ USB Radio – DSP does all decoding (PL, squelch and DTMF) and

generates TX PL
◦ SimpleUSB – Only does DTMF decoding.

 SimpleUSB is used with the rPi distros because DSP loads
the rPi which affects audio quality. But SimpleUSB does not
generate TX PL.generate TX PL.

 We need to transmit a PL tone so that non-Fusion radios (i.e.
analog FM) do not open their squelch on C4FM digital
signals.

 We wondered if we could use the rPi and some custom
electronics to generate TX PL. PiTone is born

12

13

 Sine Waveform
 Specific Frequency

◦ 110.9Hz or 9.017 milliseconds/cycle
 Frequency Tolerance of .5%

◦ +/- .55 Hz◦ +/- .55 Hz
 Sufficient Amplitude to Drive the Repeater

◦ 600 millivolts AC

14

 How to make an Analog Waveform
 With a computer that only makes 1s and 0s?

15

The solution? Use a DAC!

 Reduce the sine wave to individual DC voltages

16

The plan:
A computer calculates the amplitude and controls the timing.
A digital -to- analog convertor produces the DC voltages.

 Bill of Materials
◦ A Raspberry Pi “Zero” ($.99)
◦ An MCP4725 D-to-A converter ($1.11)
◦ A lot of programming…

17

16 STEPS 32 STEPS

18

16 STEPS 32 STEPS

64 STEPS 128 STEPS

 16 steps: interrupt every 563 microseconds

 32 steps: interrupt every 281 microseconds

64 steps: interrupt every 140 microseconds 64 steps: interrupt every 140 microseconds

 128 steps: interrupt every 70 microseconds

Expense affects frequency stability and
performance of other applications on the Pi

19

 A compromise:
◦ Produce a sine wave from 32 steps
◦ Shape the waveform using an op amp and filters
◦ Add stability by assigning Real-time priority to

PiTone

◦ Result:
Rock-solid stability
within 12 mHertz

20

 Command line options
◦ 16, 32, 64 or 128 steps (we use 32 steps)
◦ Any tone from 50 to 180 Hz (we use 110.9 Hz)
◦ Output settable from 100% to 10% of VCC (nominally 3.3 VDC) centered on ½ VCC.

◦ Reverse burst option

 Tested with Allstar, MABEL and PiTone running on the same rPi3
◦ Must run PiTone as realtime process, i.e. “chrt -r 99 ./pitone 110.9 32 100 &”
◦ Within .02 Hz of desired frequency
◦ Less than +/_ 0.1 Hz deviation◦ Less than +/_ 0.1 Hz deviation
◦ No effect on Allstar or MABEL performance
◦ Max CPU utilization less than 7% of one core

 N8BHT Repeater Configuration of PiTone uses custom MABEL DR-1X
Interface board
◦ Header to install MCP4725 breakout board ($1.12 on eBay from goodmodule)
◦ 3 pole low pass DC coupled active filter with a gain of one.
◦ 10K ohm potentiometer to set output level
◦ AC coupled output

 In addition to the SC-50 and RA-35 from Masters
Communications (http://www.masterscommunications.com/)
our second prototype utilized an rPi HAT from Lo-Tech
electronics, a PL generator from COMSPEC, a breadboard
low pass PL filter, a MCP-4725 board and a whole lot of
wiring.

 We also wanted to interface a Sainsmart 8 relay module for We also wanted to interface a Sainsmart 8 relay module for
other control functions.

 We decided to design a custom interface board. The SC-50,
RA-35, MCP-4725 with a low pass filter, rPi and Sainsmart
Relay board would all plug into this board. Screw terminal
blocks would be provided for all wire connections to the DR-
1X control connector and the RF detector.

 All required interface electronics between the rPi, SC-50 and RA-35
and the DR-1X repeater

 One optically isolated input for the RF detector.

 Two spare optically isolated inputs.
◦ Revision 2 board provides more flexibility on these inputs

 8 spare open collector outputs (74HC05)
◦ 10 pin header matches SainSmart 8 relay board

 SC-50 CTCSS/Squelch board and RA-35 plug into mating d-subs SC-50 CTCSS/Squelch board and RA-35 plug into mating d-subs

 rPi plugs into mating 40 pin connector via a ribbon cable

 MCP-4725 breakout board for PiTone PL plugs into 6 pin header

 Interface wires to the DR-1X and RF detector use screw terminals

 3 pole active lowpass filter with output poteniometer for PiTone PL
◦ Can also be used to filter a PL signal from an external board

25

 Use a directional coupler and an RF detector with open collector
output

 Motorola Micor power supply with automatic battery backup
switchover

 Motorola 100 watt amplifier driven by 5 watt DR-1X output through
a 10 dB attenuator

 Direction coupler and RF detector routed to MABEL

 Transfer relay to switch to 5 watt output when running on battery
power (activated by SainSmart relay)

 AC power loss detected on spare optically isolated input AC power loss detected on spare optically isolated input

 Sainsmart relay to turn off power to the DR-1X

 SainSmart relay to turn off AC power for testing purposes

 AT-tiny board used as a watchdog to reset the rPi using a
SainSmart relay

 All relays controlled using bash scripts and the gpio feature of
wiringpi. Control via SSH over the internet or DTMF over the air

Thank You!

33

Steve, N8AR and Larry, K8UT

